Ferroelectric and piezoelectric properties of $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ lead-free ceramics

Dunmin Lin · K. W. Kwok

Received: 29 March 2009/Accepted: 15 July 2009/Published online: 29 July 2009 © Springer Science+Business Media, LLC 2009

Abstract Lead-free ceramics $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}$ Ba_{0.06}TiO₃ have been prepared by an ordinary sintering technique and their ferroelectric and piezoelectric properties have been studied. The results of X-ray diffraction reveal that Li⁺, Ba²⁺, and La³⁺ diffuse into the Bi_{0.5}Na_{0.5}TiO₃ lattices to form a new solid solution with a pure perovskite structure. The partial substitution of Li^+ lowers the coercive field E_c and improves the remanent polarization $P_{\rm r}$. Because of the larger $P_{\rm r}$ and lower $E_{\rm c}$, the ceramic with x = 0.10 exhibits optimum piezoelectric properties: $d_{33} = 212$ pC/N and $k_{\rm P} = 36.1\%$. The partial substitution of Li⁺ for Na⁺ shifts the depolarization temperature $T_{\rm d}$ toward low temperature. The ceramics exhibit relaxor characteristic, which is probably resulted from the cation disordering in the 12-fold coordination sites. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics contain both the polar and non-polar regions near/above $T_{\rm d}$, which cause the polarization hysteresis loop become deformed and the ceramics become depolarized.

Introduction

Lead-based piezoelectric ceramics with perovskite structure based on lead zirconate titanate (PZT) and PZT-based multi-component systems are widely used for piezoelectric

D. Lin (🖂)

K. W. Kwok

actuators, sensors, transducers as well as microelectronic devices because of their excellent piezoelectric properties. However, the use of lead-based materials has caused serious lead pollution and environmental problems because of the high toxicity of lead oxide. Therefore, it is necessary to develop environment-friendly lead-free ferroelectric and piezoelectric ceramics.

Bi_{0.5}Na_{0.5}TiO₃ (BNT) ceramic is a perovskite-structured ferroelectric with rhombohedral symmetry. Because of its strong ferroelectricity ($P_r = 38 \ \mu C/cm^2$) [1], the BNT ceramic has been considered as one of the promising candidates for lead-free ceramics. However, it also has a high coercive field ($E_c = 7.3 \text{ kV/mm}$) [1], resulting in the difficulty in the poling of the ceramic. Therefore, the pure BNT ceramic usually exhibits relatively weak piezoelectric properties $(d_{33} = 58 \text{ pC/N})$ [2]. A number of studies have been carried out to improve the poling process and enhance the piezoelectric properties of the ceramics; these include the formation of solid solutions of BNT with other ABO3type ferroelectrics or non-ferroelectrics, e.g., BNT-BaTiO₃ [1], BNT-Bi_{0.5}K_{0.5}TiO₃[3], BNT-BiAlO₃[4], BNT-Bi_{0.5} K_{0.5}TiO₃–KNbO₃ [5], BNT–KNbO₃[6], BNT–SrTiO₃ [7], BNT-Bi_{0.5}K_{0.5}TiO₃-BaTiO₃ [8, 9], [Bi_{0.5}(Na_{0.7}K_{0.25} $Li_{0.05})_{0.5}$ [TiO₃-Ba(Ti_{0.95}Zr_{0.05})O₃ [10], BNT-K_{0.5}Na_{0.5} NbO₃ [11], BNT-BNT-Bi_{0.5}K_{0.5}TiO₃-0.03Ki_{0.5}Na_{0.5}NbO₃ [12], and BNT-Bi_{0.5}K_{0.5}TiO₃-BiFeO₃ [13], the substitutions of analogous ions for the A-site $(Bi_{0.5}Na_{0.5})^+$ or B-site Ti^{4+} ions, e.g., $(Bi_{1/2}Na_{1/2})Ti_{1-x}(Ni_{1/3}Nb_{2/3})_xO_3$ [14] and $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}Zr_{v}Ti_{1-v}O_{3}$ [15], and the doping of metal oxides, e.g., Nd₂O₃-doped 0.82BNT-0.18Bi_{0.5} K_{0.5}TiO₃ [16], Ta-doped 0.94BNT-0.06BaTiO₃ [17], and CeO₂-doped Bi_{0.5}Na_{0.44}K_{0.06}TiO₃ [18]. It has been noted that as a classical BNT-based system, BNT-BaTiO₃ (BNT–BT) ceramics have been reported frequently [1, 17, 19, 20]. For BNT-BT ceramics, the optimum piezoelectric

College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China e-mail: ddmd222@yahoo.com.cn

Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, People's Republic of China

properties are achieved at 6 mol.% BaTiO₃ because of the existence of morphotropic phase boundary (MPB) but the maximum value of piezoelectric coefficient d_{33} (125 pC/N) is not high enough [1]. Our previous work has also shown that the substitution of a small amount of La³⁺ (2–4 mol.%) for Bi³⁺ in the 0.94BNT–0.06BaTiO₃ ceramics can effectively enhance the piezoelectric properties [21]. In the present work, a new BNT-based multi-component solid solution, [(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO₃, was developed by the partial substitutions of 2.5–12.5 mol.% Li⁺ for Na⁺ and 2 mol.% La³⁺ for Bi³⁺ in the A-sites of 0.94BNT–0.06BaTiO₃ ceramics and prepared by an ordinary sintering method, and their microstructure, ferroelectric, and piezoelectric properties were investigated.

Experimental

[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO₃ ceramics were prepared by a conventional ceramic fabrication technique using analytical-grade metal oxides or carbonate powders as raw materials: Bi₂O₃ (99%), Na₂CO₃ (99%), Li₂CO₃ (97%), BaCO₃ (99%), La₂O₃ (99%), and TiO₂ (99.5%). The powders in the stoichiometric ratio of the compositions were mixed thoroughly in ethanol using zirconia balls for 8 h, and then dried and calcined at 850 °C for 2 h. After the calcination, the mixture was ball milled again for 8 h and mixed thoroughly with a PVA binder solution, and then pressed into disk samples. The disk samples were sintered at 1,100 °C for 2 h in air. For electrical measurements, silver electrodes were fired on the top and bottom surfaces of the samples at 730 °C for 15 min. The samples were poled at room temperature under a dc field of 5–6 kV/mm in a silicon oil bath for 30 min.

The crystalline structure of the sintered samples was examined using X-ray diffraction (XRD) analysis with CuK_{α} radiation (DX-1000). The microstructure was observed using a scanning electron microscope (JEOL JSM-5900LV). The relative permittivity ε_r and loss tangent tan δ of the ceramics at 1, 10, and 100 kHz were measured as functions of temperature using an impedance analyzer (Agilent 4192A). A conventional Sawyer-Tower circuit was used to measure the polarization hysteresis (*P*–*E*) loop at 50 Hz. The planar electromechanical coupling factor k_p and mechanical quality factor Q_m were determined by the resonance method according to the IEEE Standard using an impedance analyzer (Agilent 4294A). The piezoelectric coefficient d_{33} was measured using a piezo- d_{33} meter (ZJ-3A, China).

Results and discussion

The XRD patterns of the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}$ Ba_{0.06}TiO₃ ceramics are shown in Fig. 1. All the ceramics

Fig. 1 XRD patterns of the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics

possess a pure perovskite structure, suggesting that Li^+ , Ba^{2+} , and La^{3+} have diffused into the BNT lattices to form a new homogeneous solid solution (Fig. 1a). Similar to the 0.94BNT–0.06BaTiO₃ ceramic [1], all the [($Bi_{0.98}La_{0.02}$) $Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics reside within the MPB. This is evidenced by the splitting of the (003)/(021) characteristic peaks between 39° and 41° and the splitting of the (002)/(200) characteristic peaks between 46° and 48° as observed in the [($Bi_{0.98}La_{0.02}Na_{1-x}Li_x$)_{0.5}]_{0.94}Ba_{0.06}TiO_3 ceramics (Fig. 1b), indicating that the substitutions of Li^+ for Na⁺ and 2 mol.% La^{3+} for Bi³⁺ do not cause any significant change to the crystalline structure.

The SEM micrographs of the [(Bi_{0.98}La_{0.02}Na_{1-x} $Li_{x}_{0.5}]_{0.94}Ba_{0.06}TiO_{3}$ ceramics with x = 0.05 and 0.10 are shown in Fig. 2. Both the ceramics are well-sintered at 1,100 °C for 2 h, are dense and pore-free, having a relative density (measured by the Archimedes method) larger than 97%. It can be seen that the substitution of Li is effective in suppressing the grain growth. For the ceramic with x = 0.05, the average grain size is about 5.7 µm (Fig. 2a). As x increases to 0.10, the grain size decreases significantly to $\sim 3.0 \ \mu m$ (Fig. 1b). Similar results have been observed for the BNT-Bi_{0.5} $K_{0.5}$ TiO₃ ceramics [22], for which the grain size was reduced significantly after the addition of K^+ . It has been noted that, as compared to the Li-free BNT-based ceramics, the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_{x})_{0.5}]_{0.94}$ Ba_{0.06}TiO₃ ceramics can be well-sintered at a lower temperature (1,100 vs. 1,150–1,250 °C [1–10]). This may be attributed to the formation of the liquid phase arisen from the low melting temperature of the Li-containing compounds.

The *P*–*E* loops measured under an electric field of 7 kV/mm at room temperature for the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics with x = 0.025, 0.05, 0.10, and 0.125 are shown in Fig. 3a, while the compositional dependences of the remanent polarization P_r and coercive field E_c are shown in Fig. 3b. All the ceramics exhibit a

Fig. 2 SEM micrographs of the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}$ TiO₃ ceramics with **a** x = 0.05 sintered at 1,100 °C for 2 h; **b** x = 0.10 sintered at 1,100 °C for 2 h

typical and saturated P-E loop. As shown in Fig. 3a, the ceramic with x = 0.025 exhibits well-saturated and squarelike *P*–*E* loops with P_r and E_c of 43.0 μ C/cm² and 3.90 kV/mm. As x increases from 0.025 to 0.10, the E_c is lowered but simultaneously the P_r is increased. However, as x further increases to 0.125, the P-E loop becomes slightly flattened and slanted, giving a much smaller $P_{\rm r}$. As shown in Fig. 3b, the observed P_r increases with increasing x and then decreases, giving a maximum value of 47.2 μ C/cm² at x = 0.05, while the observed E_c decreases from 3.90 to 2.76 kV/mm as x increases from 0.025 to 0.125. As compared to the pure BNT ceramic ($P_r = 38 \ \mu C/cm^2$ and $E_{\rm c} = 7.3$ kV/mm), the present ceramics possess the much larger $P_{\rm r}$ and lower $E_{\rm c}$. The large remanent polarization favors the piezoelectricity, while the low coercive field should facilitate the poling process.

The variations of d_{33} , k_p , Q_m , ε_r , and $\tan \delta$ with x for the $[(\text{Bi}_{0.98}\text{La}_{0.02}\text{Na}_{1-x}\text{Li}_x)_{0.5}]_{0.94}\text{Ba}_{0.06}\text{TiO}_3$ ceramics are shown in Fig. 4. As shown in Fig. 4a, the observed d_{33} increases with increasing x and then decreases, giving the

Fig. 3 a *P*–*E* loops for the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics with x = 0.025, 0.05, 0.10, and 0.125 at room temperature; b Variations of P_r and E_c of the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}$ TiO₃ ceramics with x

Fig. 4 Compositional dependences of d_{33} , k_p , Q_m , ε_r , and tan δ for the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics

maximum values of 212 pC/N at x = 0.10. The observed k_p exhibits a similar variation with x and has an optimum value of 36.1% at x = 0.10 (Fig. 4a). From Fig. 4b, at $x \le 0.075$, the observed ε_r and tan δ have weak dependences on x but when x > 0.075, the ε_r and tan δ increase

greatly with x. It can be seen that the observed $Q_{\rm m}$ decreases significantly as x increases (Fig. 4a). This suggests that after the substitution of Li⁺ for Na⁺, the ceramics become "softened", thus giving rise to significant improvements in d_{33} , $k_{\rm p}$, and $\varepsilon_{\rm r}$. As compared to the pure BNT and classic 0.94BNT-BaTiO₃ ceramics, the present ceramics exhibits much better piezoelectric properties. The significant improvements in piezoelectric properties of the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_{x})_{0.5}]_{0.94}Ba_{0.06}TiO_{3}$ ceramics should also be attributed to the lower $E_{\rm c}$, larger $P_{\rm r}$ and the existence of MPB. According to the phenomenological theory, d_{33} is related to ε_r , the spontaneous polarization P_s (which may be approximated by P_r) and the electrostrictive coefficient Q_{11} via a general equation $d_{33} = 2Q_{11}\varepsilon_0\varepsilon_r P_s$ [23]. As shown in Figs. 3 and 4, the ceramic with x = 0.10possesses a relative large P_r (44.9 μ C/cm²) and a relatively high ε_r (1106), and so it exhibits the largest d_{33} .

Figure 5 shows the temperature dependences of ε_r and tan δ at 1, 10, and 100 kHz for the poled [(Bi_{0.98}La_{0.02}Na_{1-x} Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO₃ ceramics with x = 0.025, 0.05, 0.075, and 0.10. Similar to the other BNT-based ceramics [1–10], all the [(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO₃ ceramics exhibit two dielectric anomalies at T_d and T_m . T_d is the depolarization temperature which corresponds to a transition from a ferroelectric state to a so-called "anti-ferroelectric" state, while T_m is the maximum temperature at which ε_r reaches a maximum value. T_d can also be derived from the peak in the temperature plot of tan δ [3]. As shown in Fig. 5a–d, the observed T_d for the [(Bi_{0.98}La_{0.02}Na_{1-x} Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO₃ ceramics decreases from 91 to 58 °C and T_m decreases from 252 to 185 °C as x increase from 0.025 to 0.10. From Fig. 5, it is also seen that for all the

ceramics, ε_r exhibits a strong frequency dependence at T_m , and the maximum value of ε_r decreases as frequency increases while the corresponding $T_{\rm m}$ increases, suggesting that the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics are relaxor ferroelectrics and the phase transition at $T_{\rm m}$ is a diffuse phase transition. Diffuse phase transition has been observed in many ABO3-type perovskites and bismuth layer-structured compounds, such as BNT-based ceramics [9], $K_{0.5}La_{0.5}Bi_2Nb_2O_9$ [24], $Pb(Mg_{1/3}Nb_{2/3})O_3$ [25], of which either the A-sites or B-sites are occupied by at least two cations. For the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}$ TiO₃ ceramics, Na⁺, Bi³⁺, Li⁺, La³⁺, and Ba²⁺ are randomly distributed in the 12-fold coordination sites, so the observed diffuse phase transition behavior at $T_{\rm m}$ is reasonably attributed to the disordering of A-site cations and the local compositional fluctuation.

The variations of the P-E loops with temperature for $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_{x})_{0.5}]_{0.94}Ba_{0.06}TiO_{3}$ ceramics with x =0.05 and 0.10 are shown in Fig. 6. Both the ceramics exhibit a typical ferroelectric P-E loop at room temperature. For the ceramic with x = 0.05, as temperature increases to 60 °C, $E_{\rm c}$ decreases and hence the loop becomes more saturated, giving a large P_r value of 45.1 μ C/cm². However, as temperature increases to 70 °C, the loop becomes slightly deformed but the large P_r is maintained ($P_r = 42.7 \ \mu C/cm^2$). When temperature further increases to 80 °C, the P-E loop become flatted, slanted and deformed and is different from the typical ferroelectric characteristics, and P_r decreases quickly to 16.5 μ C/cm². At higher temperature, the P-E loop becomes slanted, narrow and slim gradually. At 160 °C, the loop becomes very slim and narrow, giving a very small value of P_r

Fig. 6 *P–E* loops of the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics at different temperatures: **a** x = 0.025; **b** x = 0.10

(4.89 μ C/cm²). As determined from Fig. 6a, the depolarization temperature T_d of the ceramic with x = 0.05 is about 80–90 °C, which is close to the value determined from the temperature plot of tan δ (91 °C) (Fig. 5b). From Fig. 6b, the ceramic with x = 0.10 exhibits similar temperature dependence of the ferroelectric properties, and possesses a wellsaturated P-E loop below T_d and a slightly deformed one above T_d , revealing a T_d value of about 60–70 °C. Although the loops at high temperatures (> T_d , especially 160 °C) are very slim, they are still similar to a ferroelectric hysteresis loop, and are clearly not a double-loop of antiferroelectric ceramics [26]. Besides, the forward switching field (E_{AFE-FE}) , at which the antiferroelectric domains align to become ferroelectric domains [27], cannot be observed in the loops (Fig. 6). Recently, it has been shown that, by in situ transmission electron microscopy (TEM), there is no crystallographic evidence of antiferroelectric domains near $T_{\rm d}$ [15, 27] and the depolarization is induced by the weakening of the macroscopic ferroelectric domains [27]. Together with the temperature dependence of ferroelectric and dielectric properties (Figs. 5, 6), it has been suggested that the anomalies in P-E loop were resulted from the electro-mechanical interaction between the polar and nonpolar regions which coexisted in the BNT-based ceramics near $T_{\rm d}$ [6, 7, 15, 28]. Therefore, on the basis of the above results, it is suggested that the polar region and non-polar region may coexist in the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}$

Fig. 7 Variations of P_r and E_c with temperature for the [(Bi_{0.98} La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO₃ ceramics with x = 0.05 and 0.10

Ba_{0.06}TiO₃ ceramics near/above T_d and their interaction causes the *P*–*E* loops become deformed at high temperatures near/above T_d .

The temperature dependences of P_r and E_c for the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics with x = 0.05 and 0.10 are shown in Fig. 7. From Fig. 7, P_r has the large values and keeps almost unchangeable at temperature below T_d . However, as temperature increases above T_d , P_r decreases greatly, showing clearly the ferroelectric—"non-ferroelectric" phase transition. Different from P_r , E_c decreases with increasing temperature.

Conclusions

A new Li-modified BNT-based lead-free solid solution, $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$, has been developed and prepared by an ordinary sintering technique. The results of X-ray diffraction reveal that the ceramics possess a pure perovskite structure. All the ceramics can be well-sintered at a relatively low sintering temperature (1,100°C). After the substitution of Li⁺ for Na⁺, the ceramics exhibit a lower E_c , a larger P_r and thus improved piezoelectric properties. For the ceramic with x = 0.10, the piezoelectric properties become optimum, giving $d_{33} = 212$ pC/N and $k_P = 36.1\%$. The ceramics also exhibit deformed or slim P-E loops at high temperatures near/above T_d , suggesting that the ceramics may contain both the polar and non-polar regions near/above T_d .

Acknowledgement This work was supported by the Projects of Education Department of Sichuan Province (08ZA047), and Science and Technology Bureau of Sichuan Province (09ZQ026-059).

References

- 1. Takennaka T, Maruyama K, Sakata K (1991) Jpn J Appl Phys 30:2236
- 2. Herabut A, Safari A (1997) J Am Soc 80:2954
- 3. Yoshii K, Hiruma Y, Nagata H, Takenaka T (2006) Jpn J Appl Phys 45:4493
- 4. Yu H, Ye ZG (2008) Appl Phys Lett 93:112902
- 5. Fan G, Lu W, Wang X, Liang F (2007) Appl Phys Lett 91:202908
- 6. Fan G, Lu W, Wang X, Liang F, Xiao J (2008) J Phys D: Appl
- Phys 41:035403 7. Hiruma Y, Imai Y, Watanabe Y, Nagata H, Takenaka T (2008) Appl Phys Lett 92:262904
- Zhang S, Shrout TR, Nagata H, Hiruma Y, Takenaka T (2007) IEEE Trans Ultrason Ferroelect Freq Contr 54:910
- 9. Li Y, Chen W, Xu Q, Zhou J, Gu X, Fang S (2005) Mater Chem Phys 94:328
- Zhang Z, Jia J, Yang H, Chen C, Sun H, Hu X, Yang D (2008) J Mater Sci 43:1501. doi:10.1007/s10853-007-2382-3
- 11. Kounga AB, Zhang ST, Jo W, Granzow T, Rödel J (2008) Appl Phys Lett 92:222902
- 12. Yao Z, Liu H, Chan L, Cao M (2009) Mater Lett 65:547

- 13. Zhou C, Liu X, Li W, Yuan C (2009) Mater Chem Phys 114:832
- 14. Zhou CR, Liu XY (2008) J Alloys Compd 466:563
- 15. Yao YQ, Tseng TY, Chou CC, Chen HHD (2007) J Appl Phys 102:094102
- Yang Z, Hou Y, Liu B, Wei L (2008) Ceram Int. doi: 10.1016/j.ceramint.2008.07.014
- 17. Zuo R, Ye C, Fang X, Li J (2008) J Eur Ceram Soc 28:871
- Li Y, Chen W, Xu Q, Zhou J, Wang Y, Sun H (2007) Cerarm Int 33:95
- 19. Chu BJ, Chen DR, Li GR, Yin QR (2002) J Eur Ceram Soc 22:2115
- Zhou XY, Gu HS, Wang Y, Li WY, Zhou TS (2005) Mater Lett 59:1649
- 21. Zheng Q, Xu C, Lin D, Gao D, Kwok KW (2008) J Phys D: Appl Phys 41:125411
- 22. Zhao S, Li G, Ding A, Wang T, Yin Q (2006) J Phys D: Appl Phys 39:2277
- 23. Damjanovic D (1998) Rep Prog Phys 61:1267
- 24. Karthik C, Ravishankar N, Varma KBR (2006) Appl Phys Lett 89:1760
- 25. Uchino K, Nomura S, Cross LE, Tang SJ, Newnham RE (1980) J Appl Phys 15:1142
- 26. Haertiling GH (1999) J Am Ceram Soc 82:797
- 27. Tai CWT, Choy SH, Chan HLW (2008) J Am Ceram Soc 91:3335
- Suchanicz J, Kusz J, Böhm H, Duda H, Mercurio JP (2003) J Eur Ceram Soc 22:1559