Ferroelectric and piezoelectric properties of $[(Bi_{0.98}La_{0.02}Na_{1-r}Li_r)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ lead-free ceramics

Dunmin Lin · K. W. Kwok

Received: 29 March 2009 / Accepted: 15 July 2009 / Published online: 29 July 2009 Springer Science+Business Media, LLC 2009

Abstract Lead-free ceramics $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}$ $Ba_{0.06}TiO₃$ have been prepared by an ordinary sintering technique and their ferroelectric and piezoelectric properties have been studied. The results of X-ray diffraction reveal that Li^+ , Ba²⁺, and La³⁺ diffuse into the $Bi_{0.5}Na_{0.5}TiO_3$ lattices to form a new solid solution with a pure perovskite structure. The partial substitution of $Li⁺$ lowers the coercive field E_c and improves the remanent polarization P_r . Because of the larger P_r and lower E_c , the ceramic with $x = 0.10$ exhibits optimum piezoelectric properties: $d_{33} = 212$ pC/N and $k_P = 36.1\%$. The partial substitution of Li^+ for Na⁺ shifts the depolarization temperature T_d toward low temperature. The ceramics exhibit relaxor characteristic, which is probably resulted from the cation disordering in the 12-fold coordination sites. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics contain both the polar and non-polar regions near/above T_d , which cause the polarization hysteresis loop become deformed and the ceramics become depolarized.

Introduction

Lead-based piezoelectric ceramics with perovskite structure based on lead zirconate titanate (PZT) and PZT-based multi-component systems are widely used for piezoelectric

D. Lin (\boxtimes)

K. W. Kwok

actuators, sensors, transducers as well as microelectronic devices because of their excellent piezoelectric properties. However, the use of lead-based materials has caused serious lead pollution and environmental problems because of the high toxicity of lead oxide. Therefore, it is necessary to develop environment-friendly lead-free ferroelectric and piezoelectric ceramics.

 $Bi_{0.5}Na_{0.5}TiO_3$ (BNT) ceramic is a perovskite-structured ferroelectric with rhombohedral symmetry. Because of its strong ferroelectricity ($P_r = 38 \mu C/cm^2$) [[1\]](#page-5-0), the BNT ceramic has been considered as one of the promising candidates for lead-free ceramics. However, it also has a high coercive field ($E_c = 7.3$ kV/mm) [[1\]](#page-5-0), resulting in the difficulty in the poling of the ceramic. Therefore, the pure BNT ceramic usually exhibits relatively weak piezoelectric properties ($d_{33} = 58$ pC/N) [\[2](#page-5-0)]. A number of studies have been carried out to improve the poling process and enhance the piezoelectric properties of the ceramics; these include the formation of solid solutions of BNT with other ABO_3 type ferroelectrics or non-ferroelectrics, e.g., $BNT-BaTiO₃$ [\[1](#page-5-0)], BNT–Bi_{0.5}K_{0.5}TiO₃[\[3](#page-5-0)], BNT–BiAlO₃[\[4](#page-5-0)], BNT–Bi_{0.5} $K_{0.5}TiO₃$ –KNbO₃ [[5\]](#page-5-0), BNT–KNbO₃[\[6\]](#page-5-0), BNT–SrTiO₃ [\[7](#page-5-0)], BNT-Bi_{0.5}K_{0.5}TiO₃-BaTiO₃ [\[8](#page-5-0), [9\]](#page-5-0), [Bi_{0.5}(Na_{0.7}K_{0.25}) $Li_{0.05}$ $_{0.5}$]TiO₃-Ba(Ti_{0.95}Zr_{0.05})O₃ [[10\]](#page-5-0), BNT–K_{0.5}Na_{0.5} $NbO₃$ [\[11\]](#page-5-0), BNT–BNT–Bi_{0.5}K_{0.5}TiO₃–0.03Ki_{0.5}Na_{0.5}NbO₃ [\[12](#page-5-0)], and BNT- $Bi_{0.5}K_{0.5}TiO₃ – BiFeO₃$ [\[13](#page-5-0)], the substitutions of analogous ions for the A-site $(Bi_{0.5}Na_{0.5})^+$ or B-site Ti^{4+} ions, e.g., $(Bi_{1/2}Na_{1/2})Ti_{1-x}(Ni_{1/3}Nb_{2/3})_xO_3$ [[14\]](#page-5-0) and $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}Zr_vTi_{1-v}O_3$ [[15\]](#page-5-0), and the doping of metal oxides, e.g., $Nd₂O₃$ -doped $0.82BNT-0.18Bi_{0.5}$ $K_{0.5}TiO_3$ [[16\]](#page-5-0), Ta-doped 0.94BNT–0.06BaTiO₃ [\[17](#page-5-0)], and CeO₂-doped $\text{Bi}_{0.5}\text{Na}_{0.44}\text{K}_{0.06}\text{TiO}_3$ [\[18](#page-5-0)]. It has been noted that as a classical BNT-based system, BNT-BaTiO₃ (BNT–BT) ceramics have been reported frequently [\[1](#page-5-0), [17,](#page-5-0) [19](#page-5-0), [20](#page-5-0)]. For BNT–BT ceramics, the optimum piezoelectric

College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China e-mail: ddmd222@yahoo.com.cn

Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, People's Republic of China

properties are achieved at 6 mol.% BaTiO₃ because of the existence of morphotropic phase boundary (MPB) but the maximum value of piezoelectric coefficient d_{33} (125 pC/N) is not high enough [[1\]](#page-5-0). Our previous work has also shown that the substitution of a small amount of La^{3+} (2–4) mol.%) for Bi^{3+} in the 0.94BNT–0.06BaTiO₃ ceramics can effectively enhance the piezoelectric properties [[21\]](#page-5-0). In the present work, a new BNT-based multi-component solid solution, $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_0.5]_{0.94}Ba_{0.06}TiO_3$, was developed by the partial substitutions of $2.5-12.5$ mol.% $Li⁺$ for Na⁺ and 2 mol.% La³⁺ for Bi³⁺ in the A-sites of 0.94 BNT– 0.06 BaTi $O₃$ ceramics and prepared by an ordinary sintering method, and their microstructure, ferroelectric, and piezoelectric properties were investigated.

Experimental

 $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics were prepared by a conventional ceramic fabrication technique using analytical-grade metal oxides or carbonate powders as raw materials: Bi₂O₃ (99%), Na₂CO₃ (99%), Li₂CO₃ (97%), $BaCO₃ (99%)$, $La₂O₃ (99%)$, and TiO₂ (99.5%). The powders in the stoichiometric ratio of the compositions were mixed thoroughly in ethanol using zirconia balls for 8 h, and then dried and calcined at 850 \degree C for 2 h. After the calcination, the mixture was ball milled again for 8 h and mixed thoroughly with a PVA binder solution, and then pressed into disk samples. The disk samples were sintered at $1,100$ °C for 2 h in air. For electrical measurements, silver electrodes were fired on the top and bottom surfaces of the samples at 730 °C for 15 min. The samples were poled at room temperature under a dc field of 5–6 kV/mm in a silicon oil bath for 30 min.

The crystalline structure of the sintered samples was examined using X-ray diffraction (XRD) analysis with CuK_{α} radiation (DX-1000). The microstructure was observed using a scanning electron microscope (JEOL JSM-5900LV). The relative permittivity ε_r and loss tangent tand of the ceramics at 1, 10, and 100 kHz were measured as functions of temperature using an impedance analyzer (Agilent 4192A). A conventional Sawyer-Tower circuit was used to measure the polarization hysteresis $(P-E)$ loop at 50 Hz. The planar electromechanical coupling factor k_p and mechanical quality factor Q_m were determined by the resonance method according to the IEEE Standard using an impedance analyzer (Agilent 4294A). The piezoelectric coefficient d_{33} was measured using a piezo-d₃₃ meter (ZJ-3A, China).

Results and discussion

The XRD patterns of the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}$ $Ba_{0.06}TiO₃$ ceramics are shown in Fig. 1. All the ceramics

Fig. 1 XRD patterns of the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics

possess a pure perovskite structure, suggesting that Li^+ , Ba^{2+} , and La^{3+} have diffused into the BNT lattices to form a new homogeneous solid solution (Fig. 1a). Similar to the 0.94BNT–0.06BaTiO₃ ceramic [[1\]](#page-5-0), all the $[(Bi_{0.98}La_{0.02}]$ $Na_{1-x}Li_x\rangle_{0.5}$]_{0.94}Ba_{0.06}TiO₃ ceramics reside within the MPB. This is evidenced by the splitting of the (003)/(021) characteristic peaks between 39° and 41° and the splitting of the $(002)/(200)$ characteristic peaks between 46 $^{\circ}$ and 48 $^{\circ}$ as observed in the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics (Fig. 1b), indicating that the substitutions of $Li⁺$ for Na⁺ and 2 mol.% $La³⁺$ for Bi³⁺ do not cause any significant change to the crystalline structure.

The SEM micrographs of the $[(Bi_{0.98}La_{0.02}Na_{1-x}$ Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO₃ ceramics with $x = 0.05$ and 0.10 are shown in Fig. [2.](#page-2-0) Both the ceramics are well-sintered at 1,100 \degree C for 2 h, are dense and pore-free, having a relative density (measured by the Archimedes method) larger than 97%. It can be seen that the substitution of Li is effective in suppressing the grain growth. For the ceramic with $x = 0.05$, the average grain size is about 5.7 μ m (Fig. [2a](#page-2-0)). As x increases to 0.10, the grain size decreases significantly to \sim 3.0 μ m (Fig. 1b). Similar results have been observed for the BNT–Bi_{0.5}K_{0.5}TiO₃ ceramics [[22\]](#page-5-0), for which the grain size was reduced significantly after the addition of K^+ . It has been noted that, as compared to the Li-free BNT-based ceramics, the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}$ $Ba_{0.06}TiO₃$ ceramics can be well-sintered at a lower temperature $(1,100 \text{ vs. } 1,150-1,250 \text{ °C } [1-10])$. This may be attributed to the formation of the liquid phase arisen from the low melting temperature of the Li-containing compounds.

The P–E loops measured under an electric field of 7 kV/mm at room temperature for the $[(Bi_{0.98}La_{0.02}Na_{1-x}$ Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO₃ ceramics with $x = 0.025, 0.05, 0.10,$ and 0.125 are shown in Fig. [3a](#page-2-0), while the compositional dependences of the remanent polarization P_r and coercive field E_c are shown in Fig. [3b](#page-2-0). All the ceramics exhibit a

Fig. 2 SEM micrographs of the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}$ TiO₃ ceramics with **a** $x = 0.05$ sintered at 1,100 °C for 2 h; **b** $x = 0.10$ sintered at 1,100 °C for 2 h

typical and saturated $P-E$ loop. As shown in Fig. 3a, the ceramic with $x = 0.025$ exhibits well-saturated and squarelike *P–E* loops with P_r and E_c of 43.0 μ C/cm² and 3.90 kV/mm. As x increases from 0.025 to 0.10, the E_c is lowered but simultaneously the P_r is increased. However, as x further increases to 0.125, the $P-E$ loop becomes slightly flattened and slanted, giving a much smaller P_r . As shown in Fig. 3b, the observed P_r increases with increasing x and then decreases, giving a maximum value of 47.2 μ C/cm² at $x = 0.05$, while the observed E_c decreases from 3.90 to 2.76 kV/mm as x increases from 0.025 to 0.125. As compared to the pure BNT ceramic ($P_r = 38 \mu C/cm^2$ and $E_c = 7.3$ kV/mm), the present ceramics possess the much larger P_r and lower E_c . The large remanent polarization favors the piezoelectricity, while the low coercive field should facilitate the poling process.

The variations of d_{33} , k_p , Q_m , ε_r , and tan δ with x for the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics are shown in Fig. 4. As shown in Fig. 4a, the observed d_{33} increases with increasing x and then decreases, giving the

Fig. 3 a P–E loops for the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics with $x = 0.025, 0.05, 0.10,$ and 0.125 at room temperature; **b** Variations of P_r and E_c of the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}$ $TiO₃$ ceramics with x

Fig. 4 Compositional dependences of d_{33} , k_{p} , $Q_{\rm m}$, $\varepsilon_{\rm r}$, and $\tan \delta$ for the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics

maximum values of 212 pC/N at $x = 0.10$. The observed k_p exhibits a similar variation with x and has an optimum value of 36.1% at $x = 0.10$ (Fig. 4a). From Fig. 4b, at $x \le 0.075$, the observed ε_r and tand have weak dependences on x but when $x > 0.075$, the ε_r and tand increase

greatly with x. It can be seen that the observed Q_m decreases significantly as x increases (Fig. [4a](#page-2-0)). This suggests that after the substitution of $Li⁺$ for $Na⁺$, the ceramics become ''softened'', thus giving rise to significant improvements in d_{33} , k_p , and ε_r . As compared to the pure BNT and classic $0.94BNT-BaTiO₃$ ceramics, the present ceramics exhibits much better piezoelectric properties. The significant improvements in piezoelectric properties of the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics should also be attributed to the lower E_c , larger P_r and the existence of MPB. According to the phenomenological theory, d_{33} is related to ε_r , the spontaneous polarization P_s (which may be approximated by P_r) and the electrostrictive coefficient Q_{11} via a general equation $d_{33} = 2Q_{11}\epsilon_0\epsilon_rP_s$ [\[23](#page-5-0)]. As shown in Figs. [3](#page-2-0) and [4](#page-2-0), the ceramic with $x = 0.10$ possesses a relative large P_r (44.9 μ C/cm²) and a relatively high ε_r (1106), and so it exhibits the largest d_{33} .

Figure 5 shows the temperature dependences of ε_r and $\tan\delta$ at 1, 10, and 100 kHz for the poled $[(Bi_{0.98}La_{0.02}Na_{1-x}$ Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO₃ ceramics with $x = 0.025, 0.05, 0.075,$ and 0.10. Similar to the other BNT-based ceramics $[1-10]$, all the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics exhibit two dielectric anomalies at T_d and T_m . T_d is the depolarization temperature which corresponds to a transition from a ferroelectric state to a so-called ''anti-ferroelectric" state, while T_m is the maximum temperature at which ε_r reaches a maximum value. T_d can also be derived from the peak in the temperature plot of tan δ [\[3](#page-5-0)]. As shown in Fig. 5a–d, the observed T_d for the $[(Bi_{0.98}La_{0.02}Na_{1-x}$ $Li_{x})_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics decreases from 91 to 58 °C and T_{m} decreases from 252 to 185 °C as x increase from 0.025 to 0.10. From Fig. 5, it is also seen that for all the ceramics, ε_r exhibits a strong frequency dependence at T_m , and the maximum value of ε_r decreases as frequency increases while the corresponding T_m increases, suggesting that the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics are relaxor ferroelectrics and the phase transition at T_m is a diffuse phase transition. Diffuse phase transition has been observed in many $ABO₃$ -type perovskites and bismuth layer-structured compounds, such as BNT-based ceramics [\[9](#page-5-0)], K_0 , La_0 , $Bi_2Nb_2O_9$ [\[24](#page-5-0)], $Pb(Mg_{1/3}Nb_{2/3})O_3$ [[25\]](#page-5-0), of which either the A-sites or B-sites are occupied by at least two cations. For the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_{x})_{0.5}]_{0.94}Ba_{0.06}$ TiO₃ ceramics, Na⁺, Bi³⁺, Li⁺, La³⁺, and Ba²⁺ are randomly distributed in the 12-fold coordination sites, so the observed diffuse phase transition behavior at T_m is reasonably attributed to the disordering of A-site cations and the local compositional fluctuation.

The variations of the $P-E$ loops with temperature for $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics with $x =$ 0.05 and 0.10 are shown in Fig. [6](#page-4-0). Both the ceramics exhibit a typical ferroelectric $P-E$ loop at room temperature. For the ceramic with $x = 0.05$, as temperature increases to 60 °C, E_c decreases and hence the loop becomes more saturated, giving a large P_r value of 45.1 μ C/cm². However, as temperature increases to 70 °C, the loop becomes slightly deformed but the large P_r is maintained ($P_r = 42.7 \mu C/cm^2$). When temperature further increases to 80 °C, the $P-E$ loop become flatted, slanted and deformed and is different from the typical ferroelectric characteristics, and P_r decreases quickly to 16.5 μ C/cm². At higher temperature, the $P-E$ loop becomes slanted, narrow and slim gradually. At 160 \degree C, the loop becomes very slim and narrow, giving a very small value of P_r

Fig. 6 P–E loops of the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics at different temperatures: $\mathbf{a} \times x = 0.025$; $\mathbf{b} \times x = 0.10$

(4.89 μ C/cm²). As determined from Fig. 6a, the depolarization temperature T_d of the ceramic with $x = 0.05$ is about $80-90$ °C, which is close to the value determined from the temperature plot of $tan\delta$ (91 °C) (Fig. [5](#page-3-0)b). From Fig. 6b, the ceramic with $x = 0.10$ exhibits similar temperature dependence of the ferroelectric properties, and possesses a wellsaturated $P-E$ loop below T_d and a slightly deformed one above T_d , revealing a T_d value of about 60–70 °C. Although the loops at high temperatures ($>T_d$, especially 160 °C) are very slim, they are still similar to a ferroelectric hysteresis loop, and are clearly not a double-loop of antiferroelectric ceramics [[26\]](#page-5-0). Besides, the forward switching field $(E_{\text{AFF-FF}})$, at which the antiferroelectric domains align to become ferroelectric domains [\[27](#page-5-0)], cannot be observed in the loops (Fig. 6). Recently, it has been shown that, by in situ transmission electron microscopy (TEM), there is no crystallographic evidence of antiferroelectric domains near T_d [[15,](#page-5-0) [27](#page-5-0)] and the depolarization is induced by the weakening of the macroscopic ferroelectric domains [\[27](#page-5-0)]. Together with the temperature dependence of ferroelectric and dielectric properties (Figs. [5](#page-3-0), 6), it has been suggested that the anomalies in $P-E$ loop were resulted from the electro-mechanical interaction between the polar and nonpolar regions which coexisted in the BNT-based ceramics near T_d [[6,](#page-5-0) [7](#page-5-0), [15,](#page-5-0) [28](#page-5-0)]. Therefore, on the basis of the above results, it is suggested that the polar region and non-polar region may coexist in the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}$

Fig. 7 Variations of P_r and E_c with temperature for the [(Bi_{0.98}) $La_{0.02}Na_{1-x}Li_x\rangle_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics with $x = 0.05$ and 0.10

 $Ba_{0.06}TiO₃$ ceramics near/above T_d and their interaction causes the P–E loops become deformed at high temperatures near/above T_d .

The temperature dependences of P_r and E_c for the $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$ ceramics with $x =$ 0.05 and 0.10 are shown in Fig. 7. From Fig. 7, P_r has the large values and keeps almost unchangeable at temperature below T_{d} . However, as temperature increases above T_{d} , P_{r} decreases greatly, showing clearly the ferroelectric—''nonferroelectric" phase transition. Different from P_r , E_c decreases with increasing temperature.

Conclusions

A new Li-modified BNT-based lead-free solid solution, $[(Bi_{0.98}La_{0.02}Na_{1-x}Li_x)_{0.5}]_{0.94}Ba_{0.06}TiO_3$, has been developed and prepared by an ordinary sintering technique. The results of X-ray diffraction reveal that the ceramics possess a pure perovskite structure. All the ceramics can be wellsintered at a relatively low sintering temperature $(1,100^{\circ}C)$. After the substitution of $Li⁺$ for Na⁺, the ceramics exhibit a lower E_c , a larger P_r and thus improved piezoelectric properties. For the ceramic with $x = 0.10$, the piezoelectric properties become optimum, giving $d_{33} = 212$ pC/N and $k_P = 36.1\%$. The ceramics also exhibit deformed or slim $P-E$ loops at high temperatures near/above T_d , suggesting that the ceramics may contain both the polar and non-polar regions near/above T_d .

Acknowledgement This work was supported by the Projects of Education Department of Sichuan Province (08ZA047), and Science and Technology Bureau of Sichuan Province (09ZQ026-059).

References

- 1. Takennaka T, Maruyama K, Sakata K (1991) Jpn J Appl Phys 30:2236
- 2. Herabut A, Safari A (1997) J Am Soc 80:2954
- 3. Yoshii K, Hiruma Y, Nagata H, Takenaka T (2006) Jpn J Appl Phys 45:4493
- 4. Yu H, Ye ZG (2008) Appl Phys Lett 93:112902
- 5. Fan G, Lu W, Wang X, Liang F (2007) Appl Phys Lett 91:202908
- 6. Fan G, Lu W, Wang X, Liang F, Xiao J (2008) J Phys D: Appl Phys 41:035403
- 7. Hiruma Y, Imai Y, Watanabe Y, Nagata H, Takenaka T (2008) Appl Phys Lett 92:262904
- 8. Zhang S, Shrout TR, Nagata H, Hiruma Y, Takenaka T (2007) IEEE Trans Ultrason Ferroelect Freq Contr 54:910
- 9. Li Y, Chen W, Xu Q, Zhou J, Gu X, Fang S (2005) Mater Chem Phys 94:328
- 10. Zhang Z, Jia J, Yang H, Chen C, Sun H, Hu X, Yang D (2008) J Mater Sci 43:1501. doi[:10.1007/s10853-007-2382-3](http://dx.doi.org/10.1007/s10853-007-2382-3)
- 11. Kounga AB, Zhang ST, Jo W, Granzow T, Rödel J (2008) Appl Phys Lett 92:222902
- 12. Yao Z, Liu H, Chan L, Cao M (2009) Mater Lett 65:547
- 13. Zhou C, Liu X, Li W, Yuan C (2009) Mater Chem Phys 114:832
- 14. Zhou CR, Liu XY (2008) J Alloys Compd 466:563
- 15. Yao YQ, Tseng TY, Chou CC, Chen HHD (2007) J Appl Phys 102:094102
- 16. Yang Z, Hou Y, Liu B, Wei L (2008) Ceram Int. doi: [10.1016/j.ceramint.2008.07.014](http://dx.doi.org/10.1016/j.ceramint.2008.07.014)
- 17. Zuo R, Ye C, Fang X, Li J (2008) J Eur Ceram Soc 28:871
- 18. Li Y, Chen W, Xu Q, Zhou J, Wang Y, Sun H (2007) Cerarm Int 33:95
- 19. Chu BJ, Chen DR, Li GR, Yin QR (2002) J Eur Ceram Soc 22:2115
- 20. Zhou XY, Gu HS, Wang Y, Li WY, Zhou TS (2005) Mater Lett 59:1649
- 21. Zheng Q, Xu C, Lin D, Gao D, Kwok KW (2008) J Phys D: Appl Phys 41:125411
- 22. Zhao S, Li G, Ding A, Wang T, Yin Q (2006) J Phys D: Appl Phys 39:2277
- 23. Damjanovic D (1998) Rep Prog Phys 61:1267
- 24. Karthik C, Ravishankar N, Varma KBR (2006) Appl Phys Lett 89:1760
- 25. Uchino K, Nomura S, Cross LE, Tang SJ, Newnham RE (1980) J Appl Phys 15:1142
- 26. Haertiling GH (1999) J Am Ceram Soc 82:797
- 27. Tai CWT, Choy SH, Chan HLW (2008) J Am Ceram Soc 91:3335
- 28. Suchanicz J, Kusz J, Böhm H, Duda H, Mercurio JP (2003) J Eur Ceram Soc 22:1559